Publication

A comparative performance analysis of stand-alone, off-grid solar-powered sodium hypochlorite generators

Abstract

Sodium hypochlorite (NaClO) is a chemical commodity widely employed as a disinfection agent in water treatment applications. Its production commonly follows electrochemical routes in an undivided reactor. Powering the process with photovoltaic (PV) electricity holds the potential to install stand-alone, independent generators and reduce the NaClO production cost. This study reports the comparative assessment of autonomous, solar-powered sodium hypochlorite generators employing different photovoltaic (PV) technologies: silicon hetero-junction (SHJ) and multi-junction (MJ) solar cells. For Si hetero-junctions, the series connection of either four or five SHJ (4SHJ and 5SHJ, respectively) cells was implemented to obtain the reaction potential required. MJ cells were illuminated by a novel planar solar concentrator that guarantees solar tracking with minimal linear displacements. The three solar-hypochlorite generators were tested under real atmospheric conditions, demonstrating solar-to-chemical conversion efficiencies (SCE) of 9.8% for 4SHJ, 14.2% for 5SHJ and 25.1% for MJ solar cells, respectively. Simulations based on weather databases allowed us to assess efficiencies throughout the entire model year and resulted in specific sodium hypochlorite yearly production rates between 7.2-28 g(NaClO) cm(-2) (referred to the PV surface), depending on the considered PV technology, location, and deployment of electronics converters. The economic viability and competitiveness of solar hypochlorite generators have been investigated and compared with an analog disinfection system deploying ultraviolet lamps. Our study demonstrates the feasibility of off-grid, solar-hypochlorite generators, and points towards the implementation of SHJ solar cells as a reliable technology for stand-alone solar-chemical devices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Multi-junction solar cell
Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p-n junction will produce electric current in response to different wavelengths of light. The use of multiple semiconducting materials allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to electrical energy conversion efficiency. Traditional single-junction cells have a maximum theoretical efficiency of 33.16%.
Organic solar cell
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells. The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume.
Show more
Related publications (50)

Photoelectrochemical Cell Engineering for Solar Energy Conversion

Dan Zhang

Solar energy is the most abundant energy source, harnessing solar energy holds the solution to the challenge of increasing global energy demand and reducing our dependence on fossil fuels. Photovoltaics which directly convert solar energy into electricity ...
EPFL2023

ETFE and its Role in the Fabrication of Lightweight c-Si Solar Modules

Christophe Ballif, Fabiana Lisco

Glass-free, lightweight, photovoltaic modules have the potential to enable new uses of solar in building integrated and vehicle integrated applications. Glass-free modules have the advantages of reduced weight, lower-cost mounting solutions, and reduced tr ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Molecular Tailoring of Pyridine Core-Based Hole Selective Layer for Lead Free Double Perovskite Solar Cells Fabrication

Mohammad Khaja Nazeeruddin, Peng Huang

To solve the toxicity issues related to lead-based halide perovskitesolar cells, the lead-free double halide perovskite Cs2AgBiBr6 is proposed. However, reduced rate of charge transferin double perovskites affects optoelectronic performance. We designeda s ...
AMER CHEMICAL SOC2023
Show more
Related MOOCs (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.