Publication

Denoising and Raw-waveform Networks for Weakly-Supervised Gender Identification on Noisy Speech

Abstract

This paper presents a raw-waveform neural network and uses it along with a denoising network for clustering in weakly supervised learning scenarios under extreme noise conditions. Specifically, we consider language independent Automatic Gender Recognition (AGR) on a set of varied noise conditions and Signal to Noise Ratios (SNRs). We formulate the denoising problem as a source separation task and train the system using a discriminative criterion in order to enhance output SNRs. A denoising Recurrent Neural Network (RNN) is first trained on a small subset (roughly one-fifth) of the data for learning a speech specific mask. The denoised speech signal is then directly fed as input to a raw-waveform convolutional neural network (CNN) trained with denoised speech. We evaluate the standalone performance of denoiser in terms of various signal-to-noise measures and discuss its contribution towards robust AGR. An absolute improvement of 11.06% and 13.33% is achieved by the combined pipeline over the i-vector SVM baseline system for 0 dB and -5 dB SNR conditions, respectively. We further analyse the information captured by the first CNN layer in both noisy and denoised speech.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Signal-to-noise ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems.
Speech recognition
Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech to text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis.
Show more
Related publications (38)

A Multimodal Dataset for Automatic Edge-AI Cough Detection

David Atienza Alonso, Tomas Teijeiro Campo, Lara Orlandic, Jérôme Paul Rémy Thevenot

Counting the number of times a patient coughs per day is an essential biomarker in determining treatment efficacy for novel antitussive therapies and personalizing patient care. Automatic cough counting tools must provide accurate information, while runnin ...
2023

How Does Pre-Trained Wav2Vec 2.0 Perform On Domain-Shifted Asr? An Extensive Benchmark On Air Traffic Control Communications

Petr Motlicek, Juan Pablo Zuluaga Gomez, Amrutha Prasad

Recent work on self-supervised pre-training focus on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E) acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few work ...
IEEE2022

An Efficient Signal-to-noise Approximation for Eccentric Inspiraling Binaries

Alexandra Shelest

Eccentricity has emerged as a potentially useful tool for helping to identify the origin of black hole mergers. However, eccentric templates can be computationally very expensive owing to the large number of harmonics, making statistical analyses to distin ...
IOP Publishing Ltd2022
Show more
Related MOOCs (24)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.