Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Dielectric elastomer generators (DEGs) are flexible capacitors that convert mechanical into electrical energy. They rely on an external voltage source to charge the capacitor during each operation cycle. An alternative to this is an autonomous DEG which operates with an electret as integrated voltage source. To increase the amount of energy generated per cycle, elastomers with increased permittivity, low viscoelastic losses and high strain at break are of advantage. Here, we report the synthesis of elastic materials with increased permittivity by blending different silicone matrices with nanospring carbon-nanotubes (NS-CNTs) particles and their performance as dielectric in electret DEGs. The best material developed has a dielectric permittivity of epsilon = 4.6, a mechanical loss factor of 0.03 and a strain at break of 270%. The output voltage of the DEG constructed using this composite increases from 8.8 V to 14.5 V, when the strain increases from 33% to 66%, respectively. Additionally, the output voltage increases with the rise in permittivity, from 9.3 V for a regular polydimethylsiloxane elastomer (epsilon = 2.9) to 14.5 for the best composite (epsilon = 4.6).
Danick Briand, Luis Guillermo Villanueva Torrijo, Morgan Mc Kay Monroe
Frank Nüesch, Francis Owusu, Yeerlan Adeli