Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study here experimentally, numerically and using a lubrication approach, the shape, velocity and lubrication film thickness distribution of a droplet rising in a vertical Hele-Shaw cell. The droplet is surrounded by a stationary immiscible fluid and moves purely due to buoyancy. A low density difference between the two media helps to operate in a regime with capillary number lying between and , where is built with the surrounding oil viscosity , the droplet velocity and surface tension . The experimental data show that in this regime the droplet velocity is not influenced by the thickness of the thin lubricating film and the dynamic meniscus. For iso-viscous cases, experimental and three-dimensional numerical results of the film thickness distribution agree well with each other. The mean film thickness is well captured by the Aussillous & Quere (Phys. Fluids, vol. 12 (10), 2000, pp. 2367-2371) model with fitting parameters. The droplet also exhibits the 'catamaran' shape that has been identified experimentally for a pressure-driven counterpart (Huerre et al., Phys. Rev. Lett., vol. 115 (6), 2015, 064501). This pattern has been rationalized using a two-dimensional lubrication equation. In particular, we show that this peculiar film thickness distribution is intrinsically related to the anisotropy of the fluxes induced by the droplet's motion.
Marie Estelle Solange Violay, François Xavier Thibault Passelègue, Federica Paglialunga
Jean-François Molinari, Guillaume Anciaux, Parissasadat Alavi, Julie Richard, Loris Rocchi