Publication

MATHICSE Technical Report : A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations

Assyr Abdulle, Giacomo Rosilho De Souza
2018
Report or working paper
Abstract

A local weighted discontinuous Galerkin gradient discretization method for solving ellipticequations is introduced. The local scheme is based on a coarse grid and successively improvesthe solution solving a sequence of local elliptic problems in high gradient regions. Using thegradient discretization framework we prove convergence of the scheme for linear and quasilinearequations under minimal regularity assumptions. The error due to artificial boundary conditionsis also analyzed, shown to be of higher order and shown to depend only locally on the regularityof the solution. Numerical experiments illustrate our theoretical findings and the local method’saccuracy is compared against the non local approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.