Publication

Production and characterization of low-energy Portland composite cement from post-industrial waste

2019
Journal paper
Abstract

The utilization of post-industrial waste materials is often challenging due to environmental regulations. Additionally, the scarcity of raw materials for producing cement is generating the demand for alternate sources of materials. The current study explores the production of cement and clinker on a large scale using post-industrial waste materials from different sources. Lime sludge generated by the paper mill industry and sponge iron produced during the processing of iron are used as primary source materials for producing clinker. A large-scale vertical kiln is used for clinkering. The unburnt carbon present in the sponge iron is used as an energy source for calcining the raw materials reducing the demand on external fuel. A Portland Composite Cement (PCC) is produced by inter-grinding the clinker with waste generated by the pharmaceutical industry, silico-manganese slag and fly ash. An evaluation of the clinker and the PCC is performed and compared with a commercially available Ordinary Portland Cement (OPC). Hydration studies and characterization of the materials are performed using different analytical techniques. This work provides the fundamental basis for an environmentally sustainable utilization of post-industrial waste in the production of clinker suitable for use in construction. (C) 2019 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Portland cement
Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-specialty grout. It was developed from other types of hydraulic lime in England in the early 19th century by Joseph Aspdin, and is usually made from limestone. It is a fine powder, produced by heating limestone and clay minerals in a kiln to form clinker, grinding the clinker, and adding 2 to 3 percent of gypsum. Several types of portland cement are available.
Cement
A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.
Cement clinker
Cement clinker is a solid material produced in the manufacture of Portland cement as an intermediary product. Clinker occurs as lumps or nodules, usually to in diameter. It is produced by sintering (fusing together without melting to the point of liquefaction) limestone and aluminosilicate materials such as clay during the cement kiln stage. The Portland clinker essentially consists of four minerals: two calcium silicates, alite (Ca3SiO5) and belite (Ca2SiO4), along with tricalcium aluminate (Ca3Al2O6) and calcium aluminoferrite (Ca2(Al,Fe)2O5).
Show more
Related publications (34)

Renewable energy integration and waste heat valorization in aluminum remelting for co-producing kerosene and methanol

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier

The aluminium sector relies on natural gas for the conversion of recycled scrap into new feedstock, which results in substantial atmospheric emissions. Hydric resources are also impacted, as they serve as heat sinks for the waste heat generated during the ...
2024

Towards edible robots and robotic food

Dario Floreano, Bokeon Kwak, Markéta Pankhurst, Jun Shintake

Edible robots and robotic food — edible systems that perceive, process and act upon stimulation — could open a new range of opportunities in health care, environmental management and the promotion of healthier eating habits. For example, they could enable ...
2024

Renewable energy integration and waste heat valorization in aluminum remelting for co-producing kerosene and methanol

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier

The aluminium sector relies on natural gas for the conversion of recycled scrap into new feedstock, which results in substantial atmospheric emissions. Hydric resources are also impacted, as they serve as heat sinks for the waste heat generated during the ...
Associazione Italiana Di Ingegneria Chimica2024
Show more
Related MOOCs (3)
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.