Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present a texture-driven parametric snake for semi-automatic segmentation of a single and closed structure in an image. We propose a new energy functional that combines intensity and texture information. The two types of image information are balanced using Fisher's linear discriminant analysis. The framework can be used with any filter-based texture features. The parametric representation of the snake allows for easy and friendly user interaction while the framework can be trained on-the-fly from pixel collections provided by the user. We demonstrate the efficiency of the snake through an extensive validation on synthetic as well as on real data. Additionally, we show that the proposed snake is robust to noise and that it improves the segmentation performance when compared to an intensity-only scheme.
Françoise Gisou van der Goot Grunberg, Christopher Claude Giuseppe Tremblay, Patrick Alain Sandoz
Anaïs Laure Marie-Thérèse Badoual