Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Adenylyl cyclase (AC) generates cyclic AMP required for a variety of cellular functions, and its regulation plays a major role in cellular signal transduction in eukaryotes and prokaryotes. All membrane-bound AC isoforms in eukaryotes can be activated by stimulatory G-proteins, but only AC1, AC5, and AC6 can be both stimulated and inhibited by active G alpha subunits, G alpha(s) and G(alpha)i, respectively. In principle, these G alpha(r) sensitive AC isoforms could form both binary and ternary complexes with G alpha subunits due to the noncompetitive association of inhibitory and stimulatory G alpha. However, the formation and possible catalytic activity of a putative ternary complex have not yet been experimentally confirmed due to its proposed short-lived nature. Here, the catalytic activity of such a ternary complex consisting of apo AC5, stimulatory G alpha(olf), and inhibitory G alpha(il) is investigated via classical molecular dynamics simulations. Trajectories of inhibited and stimulated binary complexes, ACS:G alpha(il) and ACS:G alpha(olf), respectively, as well as Ga-free ACS were also obtained to compare the sampled ACS conformation in the ternary complex to -those sampled under different G alpha conditions. This comparison suggests that association of both Ga subunits results in an ACS conformation similar to that sampled by the ACS:G alpha(il) complex, indicating that the ternary complex mainly samples an inactive conformation.
Bruno Emanuel Ferreira De Sousa Correia, Pablo Gainza Cirauqui
Ursula Röthlisberger, Siri Camee van Keulen, Daniele Narzi