Publication

A Fully Fail-Safe Capacitive-Based Charge Metering Method for Active Charge Balancing in Deep Brain Stimulation

Alexandre Schmid, Reza Ranjandish
2018
Conference paper
Abstract

Related to safety issues, charge balancing is a major concern in neural and functional electrical stimulation. This paper presents a capacitive-based charge metering method as a low-power and precise charge balancing method used in Deep Brain Stimulation (DBS). In contrast to the previously presented capacitive-based charge metering methods, the proposed method does not need any precise and high-speed comparator for net-zero charge detection. It is proven that this method is insensitive to the delay and the offset of its components. Consequently, using ultra-low power components in the charge balancer is feasible. Furthermore, the proposed method properly supports any stimulation mode and waveform. The proposed approach along with voltage and current mode pulse generators was validated in a 0.9% saline solution by using a DBS lead.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.