Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In the spring of 1818, ice avalanches from the Gietro Glacier created an ice dam, which in turn formed a glacial lake in the Drance Valley (Canton of Valais, Switzerland). Today, its maximum volume is estimated to have been 25x10(6) m(3). Cantonal authorities commissioned an engineer named Ignaz Venetz to mitigate the risk of the ice dam's failure. He supervised the construction of a tunnel through which a large volume of water was drained as the lake rose (9x10(6) m(3) according to his estimates and 11x10(6) m(3) according to our model). After 2.5 days of slow drainage, the ice dam failed on 16 June 1818 and caused major flooding in the Drance Valley up to 40 km downstream, resulting in about 40 deaths. Venetz's lake monitoring notes, numerous testimonies gathered in the disaster's aftermath, and our field survey have made it possible to collect a wealth of information on this event, which is one of the world's major documented glacial lake outburst floods. Reconstructing major outburst floods remains challenging because not only do they involve enormous volumes of water spreading over long distances but they are also associated with additional physical processes such as massive erosion; intense transport of ice, sediment, and debris; and damage to vegetation and buildings. This paper attempts to reconstruct the 1818 Gietro flood by focusing on its water component. We develop a simple model to estimate the initial hydrograph during the slow drainage and failure phases. The flood's features are deduced by solving the shallow-water equations numerically. The computational framework involves six free parameters, of which five are constrained by physical considerations. Using iterative manual parameter adjustments, we matched the numerical simulations to the historical data. We found that the peak discharge was close to 14,500 m(3)/s, the flood's front velocity was about 6 m/s, and flow depth varied considerably along the River Drance's bed (from 30 m just downstream of the ice dam to 2 m on the alluvial fan, 24 km west of the dam). To achieve a good agreement between computations and historical data, we had to select a high value for the Manning friction coefficient n (with n as large as 0.08 s/m(1/3)). As the Drance Valley is narrow, high flow resistance caused the flood's leading edge to behave like a plug, moving at a fairly constant velocity, with little dependence on what happened behind it. This result may explain why a simple flood routing model is able to reproduce the flood's features, because in an Alpine valley, a lateral spreading of the water volume is limited.
Kumar Varoon Agrawal, Marina Micari, Xuekui Duan
Tom Ian Battin, Davide Mancini, Marc Aguet, Adrijan Selitaj, Matteo Roncoroni
Giovanni De Cesare, Samuel Luke Vorlet, Roberto Proença Seixas