Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Hybrid organic-inorganic metal halide perovskites (MHPs) have emerged as excellent absorber materials for next generation solar cells owing to their simple solution-processed synthesis and high efficiency. This breakthrough in photovoltaics along with an accompanying impact in light-emitting applications prompted a renaissance of interest in the broad family of MHPs. Notably, the optoelectronic properties and the photovoltaic parameters of MHPs are highly sensitive to the adopted synthetic strategy. The preparation of MHPs has commonly relied on solution-based methods requiring elevated temperatures for homogeneity of reaction mixtures. While the solution-based approach is relatively versatile, it faces challenges such as limitations in compositional engineering of MHPs or their long-term storage among others. Therefore, there is a continuous great challenge to develop efficient synthetic strategies affording various high-quality MHP materials for numerous technological optoelectronic applications. In the past decade, mechanochemistry has appeared as a green alternative to traditional synthesis. This solid-state, re-emerging efficient synthetic methodology mediated by direct absorption of mechanical energy is growing explosively across organic and inorganic chemistry and materials science. In this Account, we describe our shared interest in the productive use of mechanical force in chemistry of MHPs, as well as assembly of the respective solar cell devices. We highlight the milestones achieved by our groups along with the seminal contributions by other groups. In particular, we demonstrate that mechanochemistry efficiently allows the formation of various phase pure hybrid lead and lead-free halide perovskite compositions (called hereafter "mechanoperovskites"). The progress in solvent-free solid-state synthesis is greatly enhanced by the integration of advanced methods of solid-state analysis like powder X-ray diffraction (pXRD), solid-state nuclear magnetic resonance (ss-NMR) and UV-vis spectroscopies, and we aim to illustrate this ongoing integration through appropriate examples. Furthermore, we show that thin films based on mechanoperovskites have the advantage of providing a higher degree of control of the stoichiometry and higher reproducibility, stability, and material phase purity. The impact of using powdered mechanoperovskite as a precursor for thin film formation on the electrochemical and photovoltaic properties of the solar cells is also discussed. Finally, our view of current challenges and future directions in this emerging interdisciplinary area of research is provided.
Urs Aeberhard, Beat Ruhstaller
Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan
Christophe Ballif, Aïcha Hessler-Wyser, Antonin Faes, Jacques Levrat, Gianluca Cattaneo, Fahradin Mujovi, Umang Bhupatrai Desai, Matthieu Despeisse