Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Power gating is a common approach for reducing circuit static power consumption. In FPGAs, resources that dominate static power consumption lie in the routing network. Researchers have proposed several heuristics for clustering multiplexers in the routing network into power-gating regions. In this paper, we propose a fundamentally different approach based on K-means clustering, an algorithm commonly used in machine learning. Experimental results on Titan benchmarks and Stratix-IV FPGA architecture show that our proposed clustering algorithms outperform the state of the art. For example, for 32 power-gating regions in FPGA routing switch matrices, we achieve (on average) almost 1.4× higher savings (37.48% vs. 26.94%) in the static power consumption of the FPGA routing resources at lower area overhead than the most efficient heuristic published so far.
Marco Mattavelli, Catherine Dehollain, Diego Ruben Barrettino, Kerim Türe, Mustafa Besirli, Franco Maloberti
Alexandre Schmid, Keyvan Farhang Razi
Mirjana Stojilovic, Hossein Asadi, Zeinab Seifoori