Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The aim of the present study was to investigate the effects of altitude and distance on uphill vertical speed (VS) and the main spatio-temporal gait parameters during an extreme mountain ultra-marathon. The VS, stride height (SH) and stride frequency (SF) of 27 runners were measured with an inertial sensor at the shank for two different altitude ranges (low 1300-2000 m vs high 2400-3200 m) of 10 mountains passes distributed over a 220 km course. There was a significant interaction (F(4,52) = 4.04, p < 0.01) for the effect of altitude and distance on VS. During the first passes, the mean VS was faster at lower altitudes, but this difference disappeared at a quarter of the race length, suggesting that neuromuscular fatigue influenced the uphill velocity to a larger extent than the oxygen delivery. The average VS, SH and SF were 547 +/- 135 m/h, 0.23 +/- 0.05 m and 0.66 +/- 0.09 Hz. The individual VS change for each uphill portions was more strongly correlated with the changes in SH (r = 0.80, P < 0.001, n = 321) than SF (r = 0.43, P < 0.001, n = 321). This suggests a large effect of the knee extensors strength loss on the diminution of VS.
Jan Skaloud, Davide Antonio Cucci, Kyriaki Mouzakidou
Hervé Lissek, Gilles André Courtois, Vincent Pierre Olivier Grimaldi
, , ,