Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this work we introduce and analyze a novel multilevel Monte Carlo (MLMC) estimator for the accurate approximation of central moments of system outputs affected by uncertainties. Central moments play a central role in many disciplines to characterize a random system output's distribution and are of primary importance in many prediction, optimization, and decision making processes under uncertainties. We detail how to effectively tune the MLMC algorithm for central moments of any order and present a complete practical algorithm that is implemented as part of a Python library [1]. In fact, we validate the methodology on selected reference problems and apply it to an aerodynamic relevant test case, namely the transonic RAE 2822 airfoil affected by operating and geometric uncertainties.
Kathryn Hess Bellwald, Lida Kanari, Adélie Eliane Garin
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer