Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis. During development, oriented cell division is important to proper body axis extension. Here, the authors show that sphingolipids are required to direct spindle rotation and oriented mitosis via Anthrax receptor palmitoylation in zebrafish gastrulation.
Pierre Gönczy, Beat Fierz, Luc Reymond, Georgios Hatzopoulos, Cédric Pourroy, Po-Han Chang, Nora Guidotti, Ninad Dilip Agashe, Timothy Matthias Reichart, Eduard Hubert Theodoor Marius Ebberink, Fabian Zacharias Schneider
,