Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The revelation of mechanism bifurcation is essential in the design and analysis of reconfigurable mechanisms. The first- and second-order based methods have successfully revealed the bifurcation of mechanisms. However, they fail in the novel Schatz-inspired metamorphic mechanisms presented in this paper. Here, we present the third- and fourth-order based method for their bifurcation revelation using screw theory. Based on the constraint equations derived from the first- and second-order kinematics, only one linearly independent relationship between joint angular velocities at the singular configuration of the new mechanism can be generated, which means the bifurcation cannot be revealed in this way. Therefore, we calculate constraint equations from the third- and fourth-order kinematics, and attain two linearly independent relationships between joint angular accelerations at the same singular configuration that correspond to different curvatures of the kinematic curves of two motion branches in the configuration space. Moreover, motion branches in Schatz-inspired metamorphic mechanisms are demonstrated. (C) 2020 Elsevier Ltd. All rights reserved.
Nikolaos Stergiopulos, Georgios Rovas, Vasiliki Bikia