Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Multi-objective optimization is increasingly used in engineering to design new systems and to identify design trade-offs. Yet, design problems often have objective functions and constraints that are expensive and highly non-linear. Combinations of these features lead to poor convergence and diversity loss with common algorithms that have not been specifically designed for constrained optimization. Constrained benchmark problems exist, but they do not necessarily represent the challenges of engineering problems. In this paper, a framework to design electro-mechanical actuators, called MODAct, is presented and 20 constrained multi-objective optimization test problems are derived from the framework with a specific focus on constraints. The full source code is made available to ease its use. The effects of the constraints are analyzed through their impact on the Pareto front as well as on the convergence performance. A constraint landscape analysis approach is followed and extended with three new metrics to characterize the search and objective spaces. The features of MODAct are compared to existing test suites to highlight the differences. In addition, a convergence analysis using NSGA-II, NSGA-III and C-TAEA on MODAct and existing test suites suggests that the design problems are indeed difficult due to the constraints. In particular, the number of simultaneously violated constraints in newly generated solutions seems key in understanding the convergence challenges. Thus, MODAct offers an efficient framework to analyze and handle constraints in future optimization algorithm design.
François Maréchal, Julia Granacher
Dario Floreano, Valentin Wüest, Fabio Bergonti