Publication

Polynomial Evaluation on Superscalar Architecture, Applied to the Elementary Function e(x)

Abstract

The evaluation of small degree polynomials is critical for the computation of elementary functions. It has been extensively studied and is well documented. In this article, we evaluate existing methods for polynomial evaluation on superscalar architecture. In addition, we have completed this work with a factorization method, which is surprisingly neglected in the literature. This work focuses on out-of-order Intel processors, amongst others, of which computational units are available. Moreover, we applied ourwork on the elementary function ex that requires, in the current implementation, an evaluation of a polynomial of degree 10 for a satisfying precision and performance. Our results show that the factorization scheme is the fastest in benchmarks, and that latency and throughput are intrinsically dependent on each other on superscalar architecture.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.