Accurate mapping of the functional interactions between remote brain areas with resting-state functional magnetic resonance imaging requires the quantification of their underlying dynamics. In conventional methodological pipelines, a spatial scale of interest is first selected and dynamic analysis then proceeds at this hypothesised level of complexity. If large-scale functional networks or states are studied, more local regional rearrangements are then not described, potentially missing important neurobiological information. Here, we propose a novel mathematical framework that jointly estimates resting-state functional networks and spatially more localised cross-regional modulations. To do so, the changes in activity of each brain region are modelled by a logistic regression including co-activation coefficients (reflective of network assignment, as they highlight simultaneous activations across areas) and causal interplays (denoting finer regional cross-talks, when one region active at time t modulates the t to t + 1 transition likelihood of another area). A two-parameter l1