Publication

In-vitro and in-silico characterization of zein fiber incorporating cuminaldehyde

Niloufar Sharif
2021
Journal paper
Abstract

The zein solutions containing different concentrations of cuminaldehyde (5%, 10%, and 20%, w/w) were electrospun. The morphology and average diameter of fibers were evaluated by scanning electron microscopy and the optimized fiber (20% cuminaldehyde) was chosen. Proton nuclear magnetic resonance spectroscopy and encapsulation efficiency showed the presence and desirable content of loaded cuminaldehyde in cuminaldehyde-loaded zein fiber, respectively. Chemical evaluations using Fourier transform infrared spectroscopy, X-ray diffraction, and confocal Raman spectroscopy assigned the domination of helical domains, amorphousness, and acceptive distribution to the resultant fiber, respectively. Modeling of Z19 and Z22 as well as molecular docking confirmed the results of chemical evaluations. Furthermore, the enhanced onset thermostability of cuminaldehyde (from 80 to 99 degrees C) was observed after the incorporation into zein fiber. Finally, the diffusion controlledrelease of cuminaldehyde from a hydrophobic surface, its low-risk toxicity, and potent antibacterial activity of cuminaldehyde-loaded zein fiber against Staphylococcus aureus and Escherichia coli suggested its potentiality to be used in food and therapeutic applications. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.