Publication

In-vitro and in-silico characterization of zein fiber incorporating cuminaldehyde

Niloufar Sharif
2021
Article
Résumé

The zein solutions containing different concentrations of cuminaldehyde (5%, 10%, and 20%, w/w) were electrospun. The morphology and average diameter of fibers were evaluated by scanning electron microscopy and the optimized fiber (20% cuminaldehyde) was chosen. Proton nuclear magnetic resonance spectroscopy and encapsulation efficiency showed the presence and desirable content of loaded cuminaldehyde in cuminaldehyde-loaded zein fiber, respectively. Chemical evaluations using Fourier transform infrared spectroscopy, X-ray diffraction, and confocal Raman spectroscopy assigned the domination of helical domains, amorphousness, and acceptive distribution to the resultant fiber, respectively. Modeling of Z19 and Z22 as well as molecular docking confirmed the results of chemical evaluations. Furthermore, the enhanced onset thermostability of cuminaldehyde (from 80 to 99 degrees C) was observed after the incorporation into zein fiber. Finally, the diffusion controlledrelease of cuminaldehyde from a hydrophobic surface, its low-risk toxicity, and potent antibacterial activity of cuminaldehyde-loaded zein fiber against Staphylococcus aureus and Escherichia coli suggested its potentiality to be used in food and therapeutic applications. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.