Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper presents experimental testing of a new semi-active vibration control device comprising a shape memory polymer (SMP) core that is reinforced by an SMP-aramid composite skin. This control device works as a load-transfer component that can be integrated into truss and frame structures in the form of a joint. At the material level, thermal actuation from ambient (25 degrees C) to transition temperature (65 degrees C) causes a significant 40fold increase in damping due to viscoelastic effects. At the component level, uniaxial tensile and four-point bending tests have shown that tensile strength depends primarily on the bond strength between the reinforcement skin and the structural element while flexural strength depends on the strength of the reinforcement skin fibers. Through cyclic testing, it has been observed that material viscoelasticity is beneficial to ductility and energy dissipation. When the joint core is actuated to the SMP transition temperature, axial and flexural stiffness decrease by up to 50% and 90%, respectively. The property change at material and component levels enable tuning the frequency and damping ratio at the structure level, which has been successfully employed to mitigate the dynamic response of a 1/10 scale three-story prototype frame under resonance and earthquake loadings.
Thomas Keller, Landolf-Giosef-Anastasios Rhode-Barbarigos, Tara Habibi
Simon Nessim Henein, Florent Cosandier, Nicolas Blondiaux, Loïc Benoît Tissot-Daguette, Elias Sebastian Klauser, Florent Alexandre Boudoire, Nikola Kalentics, Lisa Salamin