Publication

Step Change Detection for Improved ROCOF Evaluation of Power System Waveforms

Abstract

In the analysis of power grid waveforms, the presence of amplitude or phase steps can disrupt the estimation of frequency and rate-of-change-of-frequency (ROCOF). Standard methods based on phasor-models fail in the extraction of signal parameters during these signal dynamics, often yielding large frequency and ROCOF deviations. To address this challenge, we propose a technique that approximates components of the signal (e.g., amplitude and frequency variations) using dictionaries based on parameterized models of common signal dynamics. Distinct from a previous iteration of this method developed by the authors, the proposed technique allows for the identification of multiple steps in a window, as well as the presence of interfering tones. The method is shown to improve signal reconstruction when applied to real-world waveforms, as compared to standard static and dynamic phasor-based algorithms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.