Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Realizing photoactive and thermodynamically stable all-inorganic perovskite solar cells (PSCs) remains a challenging task within halide perovskite photovoltaic (PV) research. Here, a dual strategy for realizing efficient inorganic mixed halide perovskite PV devices based on a terbium-doped solar absorber, that is, CsPb1-xTbxI2Br, is reported, which undertakes a bulk and surface passivation treatment in the form of CsPb1-xTbxI2Br quantum dots, to maintain a photoactive gamma-phase under ambient conditions and with significantly improved operational stability. Devices fabricated from these air-processed perovskite thin films exhibit an air-stable power conversion efficiency (PCE) that reaches 17.51% (small-area devices) with negligible hysteresis and maintains >90% of the initial efficiency when operating for 600 h under harsh environmental conditions, stemming from the combined effects of the dual-protection strategy. This approach is further examined within large-area PSC modules (19.8 cm(2) active area) to realize 10.94% PCE and >30 days ambient stability, as well as within low-bandgap gamma-CsPb0.95Tb0.05I2.5Br0.5 (E-g = 1.73 eV) materials, yielding 19.01% (18.43% certified) PCE.
Quentin Jean-Marie Armand Guesnay
Kevin Sivula, Jun Ho Yum, Parnian Ferdowsi, Jiyoun Seo