Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present a microfluidic dielectrophoretic-actuated system designed to trap chosen single-cell and form controlled cell aggregates. A novel method is proposed to characterize the efficiency of the dielectrophoretic trapping, considering the flow speed but also the heat generated by the traps as limiting criteria in cell-safe manipulation. Two original designs with different manufacturing processes are experimentally compared. The most efficient design is selected and the cell membrane integrity is monitored by fluorescence imaging to guarantee a safe-cell trapping. Design rules are suggested to adapt the traps to multiple-cells trapping and are experimentally validated as we formed aggregates of controlled size and composition with two different types of cells. We provide hereby a simple manufactured tool allowing the controlled manipulation of particles for the composition of multicellular assemblies.
Christophe Ballif, Bertrand Yves Paul Paviet-Salomon, Laurie-Lou Senaud, Deniz Türkay, Lison Sylou Marthey, Matthieu Despeisse, Mathieu Gérard Boccard, Luca Massimiliano Antognini, Julie Amandine Dreon
,
Christophe Ballif, Quentin Thomas Jeangros, Christian Michael Wolff, Daniel Anthony Jacobs, Kerem Artuk, Xin Yu Chin