Publication

Time Dependent Image Generation of Plants from Incomplete Sequences with CNN-Transformer

Marc Conrad Russwurm
2022
Conference paper
Abstract

Data imputation of incomplete image sequences is an essential prerequisite for analyzing and monitoring all development stages of plants in precision agriculture. For this purpose, we propose a conditional Wasserstein generative adversarial network TransGrow that combines convolutions for spatial modeling and a transformer for temporal modeling, enabling time-dependent image generation of above-ground plant phenotypes. Thereby, we achieve the following advantages over comparable data imputation approaches: (1) The model is conditioned by an incomplete image sequence of arbitrary length, the input time points, and the requested output time point, allowing multiple growth stages to be generated in a targeted manner; (2) By considering a stochastic component and generating a distribution for each point in time, the uncertainty in plant growth is considered and can be visualized; (3) Besides interpolation, also test-extrapolation can be performed to generate future plant growth stages. Experiments based on two datasets of different complexity levels are presented: Laboratory single plant sequences with Arabidopsis thaliana and agricultural drone image sequences showing crop mixtures. When comparing TransGrow to interpolation in image space, variational, and adversarial autoencoder, it demonstrates significant improvements in image quality, measured by multi-scale structural similarity, peak signal-to-noise ratio, and Frechet inception distance. To our knowledge, TransGrow is the first approach for time- and image-dependent, high-quality generation of plant images based on incomplete sequences.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Plant
Plants are eukaryotes, predominantly photosynthetic, that form the kingdom Plantae. Many are multicellular. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi. All current definitions exclude the fungi and some of the algae. By one definition, plants form the clade Viridiplantae (Latin for "green plants") which consists of the green algae and the embryophytes or land plants. The latter include hornworts, liverworts, mosses, lycophytes, ferns, conifers and other gymnosperms, and flowering plants.
Digital image processing
Digital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Image segmentation
In and computer vision, image segmentation is the process of partitioning a into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
Show more
Related publications (44)

Aggregating Spatial and Photometric Context for Photometric Stereo

David Honzátko

Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
EPFL2024

A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning

Jean-Philippe Thiran

Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been most ...
2023

Understanding the mechanisms of non-thermal plasma treatments on seeds

Alexandra Waskow

The motivation driving plasma-seed treatment research is the renewed importance of sustainable, eco-friendly agriculture. There is a constant interest in finding alternatives to minimize resource use and environmental degradation, while ensuring healthy se ...
EPFL2022
Show more
Related MOOCs (24)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.