Publication

Scaling theory for the statistics of slip at frictional interfaces

Abstract

Slip at a frictional interface occurs via intermittent events. Understanding how these events are nucleated, can propagate, or stop spontaneously remains a challenge, central to earthquake science and tribology. In the absence of disorder, rate-and-state approaches predict a diverging nucleation length at some stress a*, beyond which cracks can propagate. Here we argue for a flat interface that disorder is a relevant perturbation to this description. We justify why the distribution of slip contains two parts: a power law corresponding to "avalanches" and a "narrow" distribution of system-spanning "fracture" events. We derive novel scaling relations for avalanches, including a relation between the stress drop and the spatial extension of a slip event. We compute the cut-off length beyond which avalanches cannot be stopped by disorder, leading to a system-spanning fracture, and successfully test these predictions in a minimal model of frictional interfaces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (24)
Earthquake prediction
Earthquake prediction is a branch of the science of seismology concerned with the specification of the time, location, and magnitude of future earthquakes within stated limits, and particularly "the determination of parameters for the next strong earthquake to occur in a region". Earthquake prediction is sometimes distinguished from earthquake forecasting, which can be defined as the probabilistic assessment of general earthquake hazard, including the frequency and magnitude of damaging earthquakes in a given area over years or decades.
Earthquake
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time.
Scale invariance
In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical term for this transformation is a dilatation (also known as dilation). Dilatations can form part of a larger conformal symmetry. In mathematics, scale invariance usually refers to an invariance of individual functions or curves.
Show more
Related publications (38)

Seismic Testing of Adjacent Interacting Masonry Structures

Katrin Beyer, Igor Tomic, Andrea Penna

Masonry buildings form building aggregates around the world in historical centers, which developed as the layout of the city or village densified. In these aggregates, adjacent buildings can share structural walls, connected at the interfaces by interlocki ...
2023

The use of ductile steel fuses for the seismic protection of acceleration sensitive non- structural components: Numerical and Experimental verification

Dimitrios Lignos, Ahmed Mohamed Ahmed Elkady

Recent seismic events have showcased the vulnerability of non-structural components to even low- or moderate-intensity earthquakes that occur far more frequently than design-basis ones. Thus, community-critical buildings, such as hospitals, telecommunicat ...
EEME2023

A multi-disciplinary view on earthquake science

Marie Estelle Solange Violay

Earthquakes are a natural hazard affecting millions of people globally every year. Researchers are working on understanding the mechanisms of earthquakes and how we can predict them from various angles, such as experimental work, theoretical modeling, and ...
NATURE PORTFOLIO2022
Show more
Related MOOCs (1)
A Resilient Future: Science and Technology for Disaster Risk Reduction
Learn how science and technology are helping reduce our risk of disasters.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.