Publication

Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels

Abstract

While interference colors have been known for a longtime, conventionalcolor filters have large spatial dimensions and cannot be used tocreate compact pixelized color pictures. Here we report a simple yetelegant interference-based method of creating microscopic structuralcolor pixels using a single-mask process using standard UV photolithographyon an all-dielectric substrate. The technology makes use of the variedaperture-controlled physical deposition rate of low-temperature silicondioxide inside a hollow cavity to create a thin-film stack with thecontrolled bottom layer thickness. The stack defines which wavelengthsof the reflected light interfere constructively, and thus the cavitiesact as micrometer-scale pixels of a predefined color. Combinationsof such pixels produce vibrant colorful pictures visible to the nakedeye. Being fully CMOS-compatible, wafer-scale, and not requiring costlyelectron-beam lithography, such a method paves the way toward largescale applications of structural colors in commercial products.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.