Publication

Atomic-scale Characterization of Strain and Gate effects on Two-dimensional Materials by Scanning Tunneling Microscopy

Jz -Yuan Juo
2023
EPFL thesis
Abstract

Strain is an inevitable phenomenon in two-dimensional (2D) material, regardless of whether the film is suspended or supported. Moreover, strain is known to alter the physical and chemical properties, such as the band gap, charge carrier effective masses, dielectric properties, chemical reactivity, and many more.One example is the metal-2D material junction, where the interaction at the interface between the contact electrode can be significantly altered by strain. Moreover, the response to strain varies depending on the contact material used. In this study, we explored different substrate roughness levels and investigated the interface properties between monolayer MoS2 and metal using X-ray photoelectron spectroscopy, atomic force microscopy, and Raman spectroscopy. Furthermore, to enable the direct measurement of strain response, I successfully developed a nanoindentation system integrated with a scanning tunneling microscopy (STM) sample holder. The system allows for in-situ reversible control of strain and gate electric fields. It utilizes a gearbox and a piezoelectric actuator, providing precise control of indentation depth at the nanometer level. The 2D materials are placed on a flexible polyimide film to ensure mechanical stability, and a Pd clamp is used to improve the transfer of strain from the polyimide to the 2D layers. The small size of the sample holder (~160 mm2 x 5.2 mm) makes it compatible with a broad range of measurement systems, including atomic force microscopy and Raman spectroscopy, in addition to STM. By employing the novel approach described above, the study has successfully observed atomic precision strain responses of 2D materials like graphene and monolayer MoS2. In their relaxed states, strain mostly arises from local curvature caused by the polyimide surface roughness. However, when the materials are under strained conditions with tented structures, lattice parameters become more sensitive to changes in indentor height, leading to additional stretching strain. The indentation system allows for further adjustments to the indentor and sample configuration, which enable the application of uniaxial strain for measuring the Poisson's ratio.As a future perspective, we identify existing challenges related to performing local spectroscopy and research topics on defect in-gap states in monolayer MoS2.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Atomic force microscopy
Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit. Atomic force microscopy (AFM) is a type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.
Single-layer materials
In materials science, the term single-layer materials or 2D materials refers to crystalline solids consisting of a single layer of atoms. These materials are promising for some applications but remain the focus of research. Single-layer materials derived from single elements generally carry the -ene suffix in their names, e.g. graphene. Single-layer materials that are compounds of two or more elements have -ane or -ide suffixes. 2D materials can generally be categorized as either 2D allotropes of various elements or as compounds (consisting of two or more covalently bonding elements).
Finite strain theory
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
Show more
Related publications (127)

Controlling crystal cleavage in focused ion beam shaped specimens for surface spectroscopy

Philip Johannes Walter Moll, Matthias Carsten Putzke, Andrew Scott Hunter

Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Melville2024

Label-Free Techniques for Probing Biomolecular Condensates

Aleksandra Radenovic, Wayne Yang Wen Wei, Khalid Ashraf Mohie Ibrahim, Helena Miljkovic, Akhil Sai Naidu

Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and e ...
Amer Chemical Soc2024

Searching for the Thinnest Metallic Wire

Nicola Marzari, Davide Campi

One-dimensional materials have gained much attention in the last decades: from carbon nanotubes to ultrathin nanowires to few-atom atomic chains, these can all display unique electronic properties and great potential for next-generation applications. Exfol ...
Amer Chemical Soc2024
Show more
Related MOOCs (24)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more