Publication

Better Trees for Santa Claus

Abstract

We revisit the problem max-min degree arborescence, which was introduced by Bateni et al. [STOC'09] as a central special case of the general Santa Claus problem, which constitutes a notorious open question in approximation algorithms. In the former problem we are given a directed graph with sources and sinks and our goal is to find vertex disjoint arborescences rooted in the sources such that at each non-sink vertex of an arborescence the out-degree is at least k, where k is to be maximized.|This problem is of particular interest, since it appears to capture much of the difficulty of the Santa Claus problem: (1) like in the Santa Claus problem the configuration LP has a large integrality gap in this case and (2) previous progress by Bateni et al. was quickly generalized to the Santa Claus problem (Chakrabarty et al. [FOCS'09]). These results remain the state-of-the-art both for the Santa Claus problem and for max-min degree arborescence and they yield a polylogarithmic approximation in quasi-polynomial time. We present an exponential improvement to this, a poly(log log n)-approximation in quasi-polynomial time for the max-min degree arborescence problem. To the best of our knowledge, this is the first example of breaking the logarithmic barrier for a special case of the Santa Claus problem, where the configuration LP cannot be utilized.|The main technical novelty of our result are locally good solutions: informally, we show that it suffices to find a poly(log n)approximation that locally has stronger guarantees. We use a liftand-project type of LP and randomized rounding, which were also used by Bateni et al., but unlike previous work we integrate careful pruning steps in the rounding. In the proof we extensively apply Lovasz Local Lemma and a local search technique, both of which were previously used only in the context of the configuration LP.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Directed graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
Rooted graph
In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots. Rooted graphs may also be known (depending on their application) as pointed graphs or flow graphs. In some of the applications of these graphs, there is an additional requirement that the whole graph be reachable from the root vertex.
Directed acyclic graph
In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called arcs), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions.
Show more
Related publications (39)

The connection of the acyclic disconnection and feedback arc sets - On an open problem of Figueroa et al.

Lukas Fritz Felix Vogl

We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Elsevier2024

Results on Sparse Integer Programming and Geometric Independent Sets

Jana Tabea Cslovjecsek

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
EPFL2023

Representation Learning for Multi-relational Data

Eda Bayram

Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
EPFL2021
Show more