Publication

Bayesian Optimization for Chemical Reactions

Résumé

Reaction optimization is challenging and traditionally delegated to domain experts who iteratively pro-pose increasingly optimal experiments. Problematically, the reaction landscape is complex and often requires hundreds of experiments to reach convergence, representing an enormous resource sink. Bayesian optimization (BO) is an optimization algorithm that recommends the next experiment based on previous observations and has recently gained considerable interest in the general chemistry community. The application of BO for chemical re-actions has been demonstrated to increase efficiency in optimization campaigns and can recommend favorable reaction conditions amidst many possibilities. Moreover, its ability to jointly optimize desired objectives such as yield and stereoselectivity makes it an attractive alternative or at least complementary to domain expert-guided optimization. With the democratization of BO software, the barrier of entry to applying BO for chemical reactions has drastically lowered. The intersection between the paradigms will see advancements at an ever-rapid pace. In this review, we discuss how chemical reactions can be transformed into machine-readable formats which can be learned by machine learning (ML) models. We present a foundation for BO and how it has already been applied to optimize chemical reaction outcomes. The important message we convey is that realizing the full potential of ML-augmented reaction optimization will require close collaboration between experimentalists and computational scientists.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.