Publication

Roger F. Harrington and the Method of Moments: Part 2: Electrodynamics

2024
Journal paper
Abstract

The method of moments (MOM), as introduced by Roger F. Harrington more than 50 years ago, is reviewed in the context of the classic potential integral equation (IE) formulations applied to both electrostatic (part 1) and electrodynamic or full-wave problems (part 2). A systematic treatment is presented, based on the concept of discrete Green's functions (GFs). For the sake of simplicity and clarity, the development is restricted to geometries composed of 2D metallic plates embedded in a homogeneous medium. Within this framework, original analytical developments are presented that simplify the formulations and enable the implementation of point-matching (PM) and Galerkin strategies without the need for a numerical evaluation of multidimensional integrals. Simple Matlab codes are provided, allowing the reader not only to reproduce but also to go beyond the pioneering results of Harrington, to whom this article pays an undisguised homage.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (28)
Numerical integration
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals.
Probabilistic numerics
Probabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Show more
Related publications (34)

Roger F. Harrington and the Method of Moments: Part 1: Electrostatics

The method of moments (MOM), as introduced by R. F. Harrington more than 50 years ago, is reviewed in the context of the classic potential integral equation (PIE) formulations applied to both electrostatic (part 1) and electrodynamic, or full-wave, problem ...
Piscataway2024

Factorized structure of the long-range two-electron integrals tensor and its application in quantum chemistry

Laura Grigori

We introduce two new approximation methods for the numerical evaluation of the long-range component of the range-separated Coulomb potential and the approximation of the resulting high dimensional Two-Electron Integrals tensor (TEI) with long-range interac ...
San Diego2023

Maximum Radiation Efficiency of an Implantable Antenna: The Role of High-Order Modes

Anja Skrivervik, Mingxiang Gao, Jakub Liska

A combination of two numerical techniques of computational electromagnetics, namely, method of moments and vector spherical wave expansion, is used to show performance limitations on the radiation efficiency of implantable antennas and to efficiently resol ...
IEEE2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.