Publication

Machine Learning for Screening Small Molecules as Passivation Materials for Enhanced Perovskite Solar Cells

Abstract

Utilization of small molecules as passivation materials for perovskite solar cells (PSCs) has gained significant attention recently, with hundreds of small molecules demonstrating passivation effects. In this study, a high-accuracy machine learning model is established to identify the dominant molecular traits influencing passivation and efficiently screen excellent passivation materials among small molecules. To address the challenge of limited available dataset, a novel evaluation method called random-extracted and recoverable cross-validation (RE-RCV) is proposed, which ensures more precise model evaluation with reduced error. Among 31 examined features, dipole moment is identified, hydrogen bond acceptor count, and HOMO-LUMO gap as significant traits affecting passivation, offering valuable guidance for the selection of passivation molecules. The predictions are experimentally validate with three representative molecules: 4-aminobenzenesulfonamide, 4-Chloro-2-hydroxy-5-sulfamoylbenzoic acid, and Phenolsulfonphthalein, which exhibit capability to increase absolute efficiency values by over 2%, with a champion efficiency of 25.41%. This highlights its potential to expedite advancements in PSCs.|A high-accuracy machine learning model is established to efficiently screen effective passivation small molecules, where random-extracted and recoverable cross-validation is introduced to enhance the model evaluation accuracy. This facilitated the identification of dominant molecular traits influencing passivation effects and the screening of excellent passivation materials. The consistency between predictions and experimental results confirmed the reliability of the machine learning model. image

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Perovskite solar cell
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture. Solar-cell efficiencies of laboratory-scale devices using these materials have increased from 3.8% in 2009 to 25.
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Show more
Related publications (32)

Enhanced performance of perovskite solar cell via up-conversion YLiF4:Yb, Er nanoparticles

Mounir Driss Mensi, Masaud Hassan S Almalki, Anwar Qasem M Alanazi

We report a simple and effective method for producing lanthanide ion-doped lithium-fluoride-based nanocrystals (YLiF4). We utilized those nanoparticles for up-conversion in fabricated perovskite solar cells. The obtained results shows that the up-conversio ...
Elsevier2024

The evolution of triphenylamine hole transport materials for efficient perovskite solar cells

Mohammad Khaja Nazeeruddin

In recent years, the dramatic increase in power conversion efficiency (PCE) coupled with a decrease in the total cost of third-generation solar cells has led to a significant increase in the collaborative research efforts of academic and industrial researc ...
ROYAL SOC CHEMISTRY2022

Compositional and interfacial optimization for enhancement of perovskite solar cells performance

Essa Awadh R Alharbi

Non-renewable sources are responsible for most of the overall greenhouse gas emissions, the development of sustainable energy sources is of prime importance to mitigate the negative effects of climate change. Among renewable sources, solar energy is one of ...
EPFL2022
Show more