Publication

An Iterative Adaptive Dynamic Programming Approach for Macroscopic Fundamental Diagram-Based Perimeter Control and Route Guidance

Nikolaos Geroliminis, Can Chen
2024
Journal paper
Abstract

Macroscopic fundamental diagrams (MFDs) have been widely adopted to model the traffic flow of large-scale urban networks. Coupling perimeter control and regional route guidance (PCRG) is a promising strategy to decrease congestion heterogeneity and reduce delays in large-scale MFD-based urban networks. For MFD-based PCRG, one needs to distinguish between the dynamics of (a) the plant that represents reality and is used as the simulation tool and (b) the model that contains easier-to-measure states than the plant and is used for devising controllers, that is, the model-plant mismatch should be considered. Traditional model-based methods (e.g., model predictive control (MPC)) require an accurate representation of the plant dynamics as the prediction model. However, because of the inherent network uncertainties, such as uncertain dynamics of heterogeneity and demand disturbance, MFD parameters could be time-varying and uncertain. Conversely, existing data-driven methods (e.g., reinforcement learning) do not consider the model-plant mismatch and the limited access to plant-generated data, for example, subregional OD-specific accumulations. Therefore, we develop an iterative adaptive dynamic programming (IADP)-based method to address the limited data source induced by the model-plant mismatch. An actor-critic neural network structure is developed to circumvent the requirement of complete information on plant dynamics. Performance comparisons with other PCRG schemes under various scenarios are carried out. The numerical results indicate that the IADP controller trained with a limited data source can achieve comparable performance with the "benchmark" MPC approach using perfect measurements from the plant. The results also validate the IADP's robustness against various uncertainties (e.g., demand noise, MFD error, and trip distance heterogeneity) when minimizing the total time spent in the urban network. These results demonstrate the great potential of the proposed scheme in improving the efficiency of multiregion MFD systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Model predictive control
Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s. In recent years it has also been used in power system balancing models and in power electronics. Model predictive controllers rely on dynamic models of the process, most often linear empirical models obtained by system identification.
Fundamental diagram of traffic flow
The fundamental diagram of traffic flow is a diagram that gives a relation between road traffic flux (vehicles/hour) and the traffic density (vehicles/km). A macroscopic traffic model involving traffic flux, traffic density and velocity forms the basis of the fundamental diagram. It can be used to predict the capability of a road system, or its behaviour when applying inflow regulation or speed limits. There is a connection between traffic density and vehicle velocity: The more vehicles are on a road, the slower their velocity will be.
Traffic flow
In mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Show more
Related publications (59)

Data-enabled Predictive Control for Empty Vehicle Rebalancing

Nikolaos Geroliminis, Giancarlo Ferrari Trecate, Pengbo Zhu

A critical operational challenge in Mobility-on-demand systems is the problem of imbalance between vehicle supply and passenger demand. However, conventional model-based methods require accurate parametric system models with complex nonlinear dynamics that ...
IEEE2023

Large-scale traffic signal control and multimodal network design

Dimitrios Tsitsokas

Traffic congestion constitutes one of the most frequent, yet challenging, problems to address in the urban space. Caused by the concentration of population, whose mobility needs surpass the serving capacity of urban networks, congestion cannot be resolved ...
EPFL2022

L'évaporation du trafic, opportunités et défis pour la mobilité d'aujourd'hui et demain

Pauline Geneviève Thérèse Hosotte

This research is the result of four years of practical and scientific investigation of the phenomenon of traffic evaporation, which was considered and then demonstrated to be the opposite of traffic induction. It has anchored, in practice and in time, an o ...
EPFL2022
Show more
Related MOOCs (28)
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.