Publication

Anodic oxidation of 2-naphthol at boron-doped diamond electrodes

Abstract

The anodic oxidn. of 2-naphthol in acid media was studied at a synthetic boron-doped diamond thin film electrode (BDD) using cyclic voltammetry and bulk electrolysis. The results showed that in the potential region, where the supporting electrolyte is stable, reactions involving simple electron transfer, such as oxidn. of 2-naphthol to naphthoxy radical and 1,4-naphthoquinone occur. Polymeric materials, which lead to electrode fouling, are also formed in this potential region. Electrolysis at high pos. potentials in the region of electrolyte decompn. causes complex oxidn. reactions by electrogenerated hydroxyl radicals leading to the complete incineration of 2-naphthol. Electrode fouling is inhibited under these conditions. The exptl. results were also compared with a theor. model. This model is based on the assumption that the rate of the anodic oxidn. of 2-naphthol is a fast reaction and it is under diffusion control. [on SciFinder (R)]

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.