Publication

Conditional Gaussian Mixtures

2003
Report or working paper
Abstract

I show how conditional Gaussians, whose means are conditioned by a random variable, can be estimated and their likelihoods computed. This is based upon how regular Gaussians have their own parameters and likelihood computed. After explaining how to estimate the parameters of Gaussians and conditional Gaussians, I explain how to calculate their likelihoods even if there are missing elements in the data or, in the case of the conditional Gaussian, even if the conditioning variable is missing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.