Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present a purely group-theoretical derivation of the continuous wavelet transform (CWT) on the 2-sphere S2, based on the construction of general coherent states associated to square integrable group representations. The parameter space X of our CWT is the product of SO(3) for motions and +* for dilations on S2, which are embedded into the Lorentz group SO0(3, 1) via the Iwasawa decomposition, so that X SO0(3, 1) M Y S O L N, where N . We select an appropriate unitary representation of SO0(3, 1) acting in the space L2(S2, d ) of finite energy signals on S2. This representation is square integrable over X; thus it yields immediately the wavelets on S2 and the associated CWT. We find a necessary condition for the admissibility of a wavelet, in the form of a zero mean condition. Finally, the Euclidean limit of this CWT on S2 is obtained by redoing the construction on a sphere of radius R and performing a group contraction for R . Then the parameter space goes into the similitude group of 2 and one recovers exactly the CWT on the plane, including the usual zero mean necessary condition for admissibility.
Olaf Blanke, Andrea Serino, Michela Bassolino, Matteo Franza, Giuliana Sorrentino, Charlène Zuber
Rachid Guerraoui, Anne-Marie Kermarrec, Olivier Ruas