**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Irvsp: To obtain irreducible representations of electronic states in the VASP

Abstract

We present an open-source program irvsp, to compute irreducible representations of electronic states for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR), which are generated by the VASP package. This program computes the traces of matrix presentations and determines the corresponding irreducible representations for all energy bands and all the k-points in the three-dimensional Brillouin zone. It also works with spin-orbit coupling (SOC), i.e., for double groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after the establishment of the theory of topological quantum chemistry. Accordingly, the associated library -irrep_bcs.a - is developed, which can be easily linked to by other ab-initio packages. In addition, the program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic TB Hamiltonians. A sister program is presented as well. Program summary Program title: irvsp CPC Library link to program files: http://doi.org/10.1763/y9ds5nnm2f.1 Licensing provisions: GNU Lesser General Public License Programming language: Fortran 90/77 Nature of problem: Determining irreducible representations for all energy bands and all the k-points in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band topology. Solution method: By computing the traces of matrix presentations of space group operators for the eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible representations for them. (C) 2020 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (2)

Loading

Loading

Related concepts (17)

Topology

In mathematics, topology (from the Greek words τόπος, and λόγος) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting

Tight binding

In solid-state physics, the tight-binding model (or TB model) is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wav

Irreducible representation

In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero

The thesis describes the computational study of structural, electonic and transport properties of monolayer transition metal dichalcogenides (TMDs) in the stable 2H and the metastable 1T' phases. Several aspects have been covered by the study including the electronic properties of the topological quantum spin Hall (QSH) state in the 1T' monolayer phase as well as the effects of strain, periodic line defects, interfaces and edges of monolayer TMDs. The electronic properties of the bulk monolayer phases were described by the ab-initio density functional theory framework while the electronic and transport properties of 1D defects were calculated using the non-equilibrium Green's function formalism. A specific focus was made on the transport of spin-polarized charge carriers across line defects in the monolayer 2H phase. Subject to energy, pseudomomentum and spin conservation, the size of the transport gap is governed by both bulk properties of a material and symmetries of a line defect. Outside the transport gap energy region, the charge carriers are discriminated with respect to their spin resulting in the spin polarization of the transmitted current. Next, the properties of the metastable monolayer 1T' phase were studied. The presence of a sufficiently large band gap is crucial to observe the QSH phase in the family of materials by probing the topological boundary states. The meV-order band gaps of the 1T' phase of monolayer TMDs were found to be sensitive to materials' lattice constants suggesting the control of the band gap size by strain. In particular, the electronic band structure and the size of the band gap in monolayer 1T'-WSe2 were found to be in agreement with spectroscopy studies. The topologically protected states at the edges of the monolayer 1T' phase as well as at the boundaries between the topological 1T' phase and the trivial 2H phase of monolayer TMDs were studied. Specific atomic structure configurations were suggested to observe experimentally the topological protection of the charge carrier transport against back-scattering. Finally, in the context of lateral semiconducting device engineering, the electronic and transverse transport properties of 2H-1T' phase boundaries as well as the dimerization defects in the 1T' phase were investigated. Both kinds of defects considered exhibit a relatively large transmission probability for the charge carriers crossing the defects. However, the differences between the shapes of bulk bands of the two phases open a sizeable transport gap for charge carriers crossing periodic domain boundaries between the monolayer 2H and 1T' phases. The calculated formation energies of dimerization defects were found to be relatively low suggesting their high concentration in real samples of monolayer 1T'-TMDs. Additionally, the thesis includes studies of magnetic dopants on the surface of Bi2Te3 and atomic vacancies in monolayer 2H-MoSe2 where the electronic properties of point defects were calculated and compared to experimental results. The two possible adsorption sites of Fe on the surface of Bi2Te3 both show a large out-of-plane magnetic anisotropy in agreement with experiments. The calculated local electronic properties of Se vacancies in monolayer 2H-MoSe2 show the presence of in-gap states which are not observed in experiment. Nevertheless, the combination of theoretical and experimental scanning tunneling microscopy images allowed the unambiguous identification of the vacancy defect.

The topology of the electron wavefunctions in certain band insulators can give rise to novel topological phases. Materials harbouring such topological phases are termed topological insulators (TI). A gapped bulk electronic spectrum, described by a topological invariant, and gapless boundary modes, tend to characterize the non-trivial topology. This work describes a theoretical investigation of the Z2 topological insulator phase in Bi2Se3 and Bi2Te3, and the topological crystalline insulator (TCI) phase in SnTe, subject to nanoscale confinement. Specifically, it details the electronic structure, and properties of low-dimensional nanostructures derived from the bulk topological phase. For the bismuth chalcogenides, a first principles methodology is applied to compute the energetics of high-index surfaces, followed by an analysis of the electronic properties of corresponding topological surface state charge carriers. Our calculations find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of constituent elements. For the uniquely defined stoichiometric termination, the Dirac fermion surface states exhibit a strong anisotropy, with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Non-stoichiometric surfaces undergo self-doping effects, which results in the presence of topologically trivial mid-gap states. These findings guide the construction of Bi2Se3 nanostructures of a nanowire (NW) and nanoribbon (NR) morphology. A tight-binding formalism is utilised to study, firstly, the impact of finite-size effects on the electronic spectrum of each nanostructure. Secondly, the effects of confinement on the topological properties of two-dimensional (2D) Dirac fermion surface states. Quantum confinement around each nanostructure perimeter entails the formation of a series of discrete one-dimensional (1D) sub-bands in the bulk gap. An analysis of how the band gap varies as a function of nanostructure dimensions finds that the dependence is highly sensitive to nanostructure morphology. We reveal a clear correspondence between the spin helicity of the 2D surface Dirac cone and the spin properties of the 1D sub-bands. This is exemplified in the real space spin textures of each nanostructure. For the NW morphology, this correspondence gives rise to an energy dependent spin polarization density. Whereas for the NR morphology the presence of two separate surface types results in a more complex relationship. Finally, via a similar tight-binding formalism, we establish how the crystal-symmetry-dependent topological phases of SnTe (001) thin films are exhibited in lower dimensional nanowires. SnTe (001) thin films, defined by either mirror or glide symmetry, realise distinct 2D TCI phases. As the band dispersion of NWs are characterised by which of these symmetry classes they belong to, we subsequently connect the distinctive NW surface states to the respective parent 2D TCI phase. Lastly, we show that the robust topological protection offered by the mirror symmetry protected 2D TCI phase is manifested in robust surface states of NWs of equivalent symmetry.