Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge.
Modal logics are formal systems that include unary operators such as and , representing possibility and necessity respectively. For instance the modal formula can be read as "possibly " while can be read as "necessarily ". In the standard relational semantics for modal logic, formulas are assigned truth values relative to a possible world. A formula's truth value at one possible world can depend on the truth values of other formulas at other accessible possible worlds. In particular, is true at a world if is true at some accessible possible world, while is true at a world if is true at every accessible possible world. A variety of proof systems exist which are sound and complete with respect to the semantics one gets by restricting the accessibility relation. For instance, the deontic modal logic D is sound and complete if one requires the accessibility relation to be serial.
While the intuition behind modal logic dates back to antiquity, the first modal axiomatic systems were developed by C. I. Lewis in 1912. The now-standard relational semantics emerged in the mid twentieth century from work by Arthur Prior, Jaakko Hintikka, and Saul Kripke. Recent developments include alternative topological semantics such as neighborhood semantics as well as applications of the relational semantics beyond its original philosophical motivation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A multimodal logic is a modal logic that has more than one primitive modal operator. They find substantial applications in theoretical computer science. A modal logic with n primitive unary modal operators is called an n-modal logic. Given these operators and negation, one can always add modal operators defined as if and only if . Perhaps the first substantive example of a two-modal logic is Arthur Prior's tense logic, with two modalities, F and P, corresponding to "sometime in the future" and "sometime in the past".
Doxastic logic is a type of logic concerned with reasoning about beliefs. The term derives from the Ancient Greek (doxa, "opinion, belief"), from which the English term doxa ("popular opinion or belief") is also borrowed. Typically, a doxastic logic uses the notation to mean "It is believed that is the case", and the set denotes a set of beliefs. In doxastic logic, belief is treated as a modal operator. There is complete parallelism between a person who believes propositions and a formal system that derives propositions.
Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A (or it ought to be (the case) that A), and PA to mean it is permitted (or permissible) that A, which is defined as .
ML for predictive modeling is important in both industry and research. We join experts from stats and math to shed light on particular aspects of the theory and interpretability of DL. We discuss the
Explores the application of machine learning in medicine, emphasizing interpretability, variability between patients, and the quest for transparent equations in medical models.
Explores the evolution of generative modeling, from traditional methods to cutting-edge advancements, addressing challenges and envisioning future possibilities.
Covers a mathematical introduction to deep learning, including challenges, power of linear classifiers, model scaling, and theoretical aspects.
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Game theory is the study of mathematical models of strategic interactions among rational agents. It has applications in all fields of social science, as well as in logic, systems science and computer science. The concepts of game theory are used extensively in economics as well. The traditional methods of game theory addressed two-person zero-sum games, in which each participant's gains or losses are exactly balanced by the losses and gains of other participants.
Ethics or moral philosophy is a branch of philosophy that "involves systematizing, defending, and recommending concepts of right and wrong behavior". The field of ethics, along with aesthetics, concerns matters of value; these fields comprise the branch of philosophy called axiology. Ethics seeks to resolve questions of human morality by defining concepts such as good and evil, right and wrong, virtue and vice, justice and crime. As a field of intellectual inquiry, moral philosophy is related to the fields of moral psychology, descriptive ethics, and value theory.
Owing to the diminishing returns of deep learning and the focus on model accuracy, machine learning for chemistry might become an endeavour exclusive to well-funded institutions and industry. Extending the focus to model efficiency and interpretability wil ...
The analysis of multiple data streams is a long-standing practice within educational research. Both multimodal data analysis and temporal analysis have been applied successfully, but in the area of collaborative learning, very few studies have investigated ...
This paper describes the Idiap submission to WAT 2019 for the English-Hindi Multi-Modal Translation Task. We have used the state-of-the-art Transformer model and utilized the IITB English-Hindi parallel corpus as an additional data source. Among the differ ...