In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions. History of type theory Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" theory of types together with an "axiom of reducibility" both of which featured prominently in Whitehead and Russell's Principia Mathematica published between 1910 and 1913. This system avoided Russell's paradox by creating a hierarchy of types and then assigning each concrete mathematical entity to a type. Entities of a given type are built exclusively of subtypes of that type, thus preventing an entity from being defined using itself. Russell's theory of types ruled out the possibility of a set being a member of itself. Types were not always used in logic. There were other techniques to avoid Russell's paradox. Types did gain a hold when used with one particular logic, Alonzo Church's lambda calculus. The most famous early example is Church's simply typed lambda calculus. Church's theory of types helped the formal system avoid the Kleene–Rosser paradox that afflicted the original untyped lambda calculus. Church demonstrated that it could serve as a foundation of mathematics and it was referred to as a higher-order logic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (17)
Category theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, numerous constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories.
Automata theory
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word automata comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton (automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton (FA) or Finite-State Machine (FSM).
Programming language theory
Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including mathematics, software engineering, and linguistics. There are a number of academic conferences and journals in the area. History of programming languages and Programming language#History In some ways, the history of programming language theory predates even the development of programming languages themselves.
Show more
Related concepts (32)
Simply typed lambda calculus
The simply typed lambda calculus (), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term simple type is also used to refer extensions of the simply typed lambda calculus such as products, coproducts or natural numbers (System T) or even full recursion (like PCF).
Dependent type
In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, F*, Epigram, and Idris, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations.
Typed lambda calculus
A typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and untyped lambda calculus a special case with only one type.
Show more
Related courses (51)
CS-452: Foundations of software
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
CS-428: Interactive theorem proving
A hands-on introduction to interactive theorem proving, computer-checked mathematics, compiler verification, proofs as programs, dependent types, and proof automation. Come learn how to write compute
CS-214: Software construction
Learn how to design and implement reliable, maintainable, and efficient software using a mix of programming skills (declarative style, higher-order functions, inductive types, parallelism) and fundam
Show more
Related lectures (150)
Lambda Calculus and Type Safety: An Overview
Provides an overview of lambda calculus, type safety, and type inference in programming languages.
Dependent Types in Programming Languages
Explores maps, type operators, equivalence, first-class types, System Fw, Coq, and the challenges of type checking in programming languages.
Simply Typed Lambda Calculus: Foundations and Properties
Covers the simply typed lambda calculus, focusing on its syntax, semantics, and type system properties such as progress and preservation.
Show more
Related publications (281)

When Subtyping Constraints Liberate A Novel Type Inference Approach for First-Class Polymorphism

Lionel Emile Vincent Parreaux, Aleksander Slawomir Boruch-Gruszecki

Type inference in the presence of first-class or "impredicative" second-order polymorphism a la System F has been an active research area for several decades, with original works dating back to the end of the 80s. Yet, until now many basic problems remain ...
Assoc Computing Machinery2024

Degrees of Separation: A Flexible Type System for Safe Concurrency

Martin Odersky, Yichen Xu, Aleksander Slawomir Boruch-Gruszecki

Data races have long been a notorious problem in concurrent programming. They are subtle to detect, and lead to non-deterministic behaviours. There has been a lot of interest in type systems that statically guarantee data race freedom. Significant progress ...
2024

SC-TPTP: An Extension of the TPTP Derivation Format for Sequent-Based Calculus

Simon Guilloud

Motivated by the transfer of proofs between proof systems, and in particular from first order automated theorem provers (ATPs) to interactive theorem provers (ITPs), we specify an extension of the TPTP derivation text format to describe proofs in first-ord ...
2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.