Freeze drying, also known as lyophilization or cryodesiccation, is a low temperature dehydration process that involves freezing the product and lowering pressure, removing the ice by sublimation. This is in contrast to dehydration by most conventional methods that evaporate water using heat.
Because of the low temperature used in processing, the rehydrated product retains much of its original qualities. When solid objects like strawberries are freeze dried the original shape of the product is maintained. If the product to be dried is a liquid, as often seen in pharmaceutical applications, the properties of the final product are optimized by the combination of excipients (i.e., inactive ingredients). Primary applications of freeze drying include biological (e.g., bacteria and yeasts), biomedical (e.g., surgical transplants), food processing (e.g., coffee) and preservation.
The Inca were freeze drying potatoes into chuño from the 13th century. The process involved multiple cycles of exposing potatoes to below freezing temperatures on mountain peaks in the Andes during the evening, and squeezing water out and drying them in the sunlight during the day.
Modern freeze drying began as early as 1890 by Richard Altmann who devised a method to freeze dry tissues (either plant or animal), but went virtually unnoticed until the 1930s. In 1909, L. F. Shackell independently created the vacuum chamber by using an electrical pump. No further freeze drying information was documented until Tival in 1927 and Elser in 1934 had patented freeze drying systems with improvements to freezing and condenser steps.
A significant turning point for freeze drying occurred during World War II when blood plasma and penicillin were needed to treat the wounded in the field. Because of the lack of refrigerated transport, many serum supplies spoiled before reaching their recipients. The freeze-drying process was developed as a commercial technique that enabled blood plasma and penicillin to be rendered chemically stable and viable without refrigeration.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Drying is a mass transfer process consisting of the removal of water or another solvent by evaporation from a solid, semi-solid or liquid. This process is often used as a final production step before selling or packaging products. To be considered "dried", the final product must be solid, in the form of a continuous sheet (e.g., paper), long pieces (e.g., wood), particles (e.g., cereal grains or corn flakes) or powder (e.g., sand, salt, washing powder, milk powder).
Dried fruit is fruit from which the majority of the original water content has been removed either naturally, through sun drying, or through the use of specialized dryers or dehydrators. Dried fruit has a long tradition of use dating back to the fourth millennium BC in Mesopotamia, and is prized because of its sweet taste, nutritive value, and long shelf life. Today, dried fruit consumption is widespread. Nearly half of the dried fruits sold are raisins, followed by dates, prunes, figs, apricots, peaches, apples, and pears.
Space food is a type of food product created and processed for consumption by astronauts during missions to outer space. The food has specific requirements to provide a balanced diet and adequate nutrition for individuals working in space while being easy and safe to store, prepare and consume in the machinery-filled weightless environments of crewed spacecraft. Most space food is freeze-dried to ensure long shelf life.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
Explores probiotic technology, postbiotics, and microbial health, emphasizing the importance of maintaining a healthy microbiome and the impact of postbiotics on immune modulation.
The development of hemoglobin (Hb)-based oxygen carriers (HBOCs) holds a lot of potential to overcome important drawbacks of donor blood such as a short shelf life or the potential risk of infection. However, a crucial limitation of current HBOCs is the au ...
The geometry of biomolecules isolated in the gas phaseusuallydiffers substantially from their native structures in aqueous solution,which are the only ones truly relevant to life science. To connectthe high resolution of cold ion spectroscopy that can be a ...
Cellulose nanocrystal (CNC) suspensions can self-assemble into chiral nematic films upon the slow evaporation of water. These films are brittle, as indicated by their fracturing instead of plastically deforming once they are fully elastically deformed. Thi ...