Wagonways (also spelt Waggonways), also known as horse-drawn railways and horse-drawn railroad consisted of the horses, equipment and tracks used for hauling wagons, which preceded steam-powered railways. The terms plateway, tramway, dramway, were used. The advantage of wagonways was that far bigger loads could be transported with the same power.
The earliest evidence is of the long Diolkos paved trackway, which transported boats across the Isthmus of Corinth in Greece from around 600 BC. Wheeled vehicles pulled by men and animals ran in grooves in limestone, which provided the track element, preventing the wagons from leaving the intended route. The Diolkos was in use for over 650 years, until at least the 1st century AD. Paved trackways were later built in Roman Egypt.
Such an operation was illustrated in Germany in 1556 by Georgius Agricola (image right) in his work De re metallica. This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons Hunde ("dogs") from the noise they made on the tracks.
Around 1568, German miners working in the Mines Royal near Keswick used such a system. Archaeological work at the Mines Royal site at Caldbeck in the English Lake District confirmed the use of "hunds".
In 1604, Huntingdon Beaumont completed the Wollaton Wagonway, built to transport coal from the mines at Strelley to Wollaton Lane End, just west of Nottingham, England. Wagonways have been discovered between Broseley and Jackfield in Shropshire from 1605, used by James Clifford to transport coal from his mines in Broseley to the Severn River. It has been suggested that these are somewhat older than that at Wollaton.
The Middleton Railway in Leeds, which was built in 1758 as a wagonway, later became the world's first operational railway (other than funiculars), albeit in an upgraded form. In 1764, the first railway in the America was built in Lewiston, New York as a wagonway.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam. It is fuelled by burning combustible material (usually coal, oil or, rarely, wood) to heat water in the locomotive's boiler to the point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels. In most locomotives, the steam is admitted alternately to each end of its cylinders in which pistons are mechanically connected to the locomotive's main wheels.
Broseley (broʊzliː) is a market town in Shropshire, England, with a population of 4,929 at the 2011 Census and an estimate of 5,022 in 2019. The River Severn flows to its north and east. The first iron bridge in the world was built in 1779 across the Severn, linking Broseley with Coalbrookdale and Madeley. This contributed to the early industrial development in the Ironbridge Gorge, which is now part of a World Heritage Site. There was a settlement existing in 1086, listed as Bosle in the Domesday Book of that year, when it lay in the Hundred of Alnodestreu.
A mine railway (or mine railroad, U.S.), sometimes pit railway, is a railway constructed to carry materials and workers in and out of a mine. Materials transported typically include ore, coal and overburden (also called variously spoils, waste, slack, culm, and tilings; all meaning waste rock). It is little remembered, but the mix of heavy and bulky materials which had to be hauled into and out of mines gave rise to the first several generations of railways, at first made of wooden rails, but eventually adding protective iron, steam locomotion by fixed engines and the earliest commercial steam locomotives, all in and around the works around mines.
Riveted railway bridges are commonly considered as being “old”, having fatigue damage and are therefore replaced. While this practice should be by now obsolete by using novel engineering methods like structural monitoring, prolongation of the service durat ...
An implantable system for monitoring vital parameters via bio-sensors inside freely moving laboratory animals and its powering system are presented. The required 2 mW are harvested by the magnetic coupling with an external coil placed under the living spac ...