Concept

Algebraically closed field

Summary
In mathematics, a field F is algebraically closed if every non-constant polynomial in F[x] (the univariate polynomial ring with coefficients in F) has a root in F. As an example, the field of real numbers is not algebraically closed, because the polynomial equation has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraically closed field is the field of (complex) algebraic numbers. No finite field F is algebraically closed, because if a1, a2, ..., an are the elements of F, then the polynomial (x − a1)(x − a2) ⋯ (x − an) + 1 has no zero in F. However, the union of all finite fields of a fixed characteristic p is an algebraically closed field, which is, in fact, the algebraic closure of the field with p elements. Given a field F, the assertion "F is algebraically closed" is equivalent to other assertions: The field F is algebraically closed if and only if the only irreducible polynomials in the polynomial ring F[x] are those of degree one. The assertion "the polynomials of degree one are irreducible" is trivially true for any field. If F is algebraically closed and p(x) is an irreducible polynomial of F[x], then it has some root a and therefore p(x) is a multiple of x − a. Since p(x) is irreducible, this means that p(x) = k(x − a), for some k ∈ F \ {0}. On the other hand, if F is not algebraically closed, then there is some non-constant polynomial p(x) in F[x] without roots in F. Let q(x) be some irreducible factor of p(x). Since p(x) has no roots in F, q(x) also has no roots in F. Therefore, q(x) has degree greater than one, since every first degree polynomial has one root in F. The field F is algebraically closed if and only if every polynomial p(x) of degree n ≥ 1, with coefficients in F, splits into linear factors.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.