Meningioma, also known as meningeal tumor, is typically a slow-growing tumor that forms from the meninges, the membranous layers surrounding the brain and spinal cord. Symptoms depend on the location and occur as a result of the tumor pressing on nearby tissue. Many cases never produce symptoms. Occasionally seizures, dementia, trouble talking, vision problems, one sided weakness, or loss of bladder control may occur.
Risk factors include exposure to ionizing radiation such as during radiation therapy, a family history of the condition, and neurofibromatosis type 2. They appear to be able to form from a number of different types of cells including arachnoid cells. Diagnosis is typically by medical imaging.
If there are no symptoms, periodic observation may be all that is required. Most cases that result in symptoms can be cured by surgery. Following complete removal fewer than 20% recur. If surgery is not possible or all the tumor cannot be removed, radiosurgery may be helpful. Chemotherapy has not been found to be useful. A small percentage grow rapidly and are associated with worse outcomes.
About one per thousand people in the United States are currently affected. Onset is usually in adults. In this group they represent about 30% of brain tumors. Women are affected about twice as often as men. Meningiomata were reported as early as 1614 by Felix Plater.
Small tumors (e.g., < 2.0 cm) usually are incidental findings at autopsy without having caused symptoms. Larger tumors may cause symptoms, depending on the size and location.
Focal seizures may be caused by meningiomata that overlie the cerebrum.
Progressive spastic weakness in legs and incontinence may be caused by tumors that overlie the parasagittal frontoparietal region.
Tumors of the Sylvian aqueduct may cause myriad motor, sensory, aphasic, and seizure symptoms, depending on the location.
Increased intracranial pressure eventually occurs, but is less frequent than in gliomas.
Diplopia (Double vision) or uneven pupil size may be symptoms if related pressure causes a third and/or sixth nerve palsy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A vestibular schwannoma (VS), also called acoustic neuroma, is a benign tumor that develops on the vestibulocochlear nerve that passes from the inner ear to the brain. The tumor originates when Schwann cells that form the insulating myelin sheath on the nerve malfunction. Normally, Schwann cells function beneficially to protect the nerves which transmit balance and sound information to the brain. However, sometimes a mutation in the tumor suppressor gene, NF2, located on chromosome 22, results in abnormal production of the cell protein named Merlin, and Schwann cells multiply to form a tumor.
Stereotactic surgery is a minimally invasive form of surgical intervention that makes use of a three-dimensional coordinate system to locate small targets inside the body and to perform on them some action such as ablation, biopsy, lesion, injection, stimulation, implantation, radiosurgery (SRS), etc. In theory, any organ system inside the body can be subjected to stereotactic surgery. However, difficulties in setting up a reliable frame of reference (such as bone landmarks, which bear a constant spatial relation to soft tissues) mean that its applications have been, traditionally and until recently, limited to brain surgery.
A benign tumor is a mass of cells (tumor) that does not invade neighboring tissue or metastasize (spread throughout the body). Compared to malignant (cancerous) tumors, benign tumors generally have a slower growth rate. Benign tumors have relatively well differentiated cells. They are often surrounded by an outer surface (fibrous sheath of connective tissue) or stay contained within the epithelium. Common examples of benign tumors include moles and uterine fibroids. Some forms of benign tumors may be harmful to health.
Explores experimental evidence supporting immunoediting of tumors and the use of immunotherapy to enhance antitumor immune responses.
Covers modern radiation therapy techniques, optimizing dose distribution for effective tumor control while minimizing normal tissue complications.
Covers precision tumor recognition, challenges in T cell therapy, vaccination impact, history, types, and examples of vaccines, immune response, and COVID-19 vaccine types.
PURPOSE The PNOC001 phase II single-arm trial sought to estimate progression-free survival (PFS) associated with everolimus therapy for progressive/recurrent pediatric low-grade glioma (pLGG) on the basis of phosphatidylinositol 3-kinase (PI3K)/AKT/mammali ...
2023
Perioptic meningiomas, defined as those that are less than 3 mm from the optic apparatus, are challenging to treat with stereotactic radiosurgery (SRS). Tumor control must be weighed against the risk of radiation-induced optic neuropathy (RION), as both tu ...
New York2023
ObjectiveProton beam therapy is considered, by some authors, as having the advantage of delivering dose distributions more conformal to target compared with stereotactic radiosurgery (SRS). Here, we performed a systematic review and meta-analysis of proton ...