Oxygen evolution is the process of generating molecular oxygen (O2) by a chemical reaction, usually from water. Oxygen evolution from water is effected by oxygenic photosynthesis, electrolysis of water, and thermal decomposition of various oxides. The biological process supports aerobic life. When relatively pure oxygen is required industrially, it is isolated by distilling liquefied air.
Oxygen evolving complex
Photosynthetic oxygen evolution is the fundamental process by which oxygen is generated in the earth's biosphere. The reaction is part of the light-dependent reactions of photosynthesis in cyanobacteria and the chloroplasts of green algae and plants. It utilizes the energy of light to split a water molecule into its protons and electrons for photosynthesis. Free oxygen, generated as a by-product of this reaction, is released into the atmosphere.
Water oxidation is catalyzed by a manganese-containing cofactor contained in photosystem II, known as the oxygen-evolving complex (OEC) or the water-splitting complex. Manganese is an important cofactor, and calcium and chloride are also required for the reaction to occur. The stoichiometry of this reaction is as follows:
2H2O ⟶ 4e− + 4H+ + O2
The protons are released into the thylakoid lumen, thus contributing to the generation of a proton gradient across the thylakoid membrane. This proton gradient is the driving force for adenosine triphosphate (ATP) synthesis via photophosphorylation and the coupling of the absorption of light energy and the oxidation of water for the creation of chemical energy during photosynthesis.
It was not until the end of the 18th century that Joseph Priestley accidentally discovered the ability of plants to "restore" air that had been "injured" by the burning of a candle. He followed up on the experiment by showing that air "restored" by vegetation was "not at all inconvenient to a mouse." He was later awarded a medal for his discoveries that "...no vegetable grows in vain... but cleanses and purifies our atmosphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
This course covers the fundamental and applied aspects of electrocatalysis related to renewable energy conversion and storage. The focus is on catalysis for hydrogen evolution, oxygen evolution, and C
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. OEC is surrounded by 4 core proteins of photosystem II at the membrane-lumen interface. The mechanism for splitting water involves absorption of three photons before the fourth provides sufficient energy for water oxidation. Based on a widely accepted theory from 1970 by Kok, the complex can exist in 5 states: S0 to S4.
Light-dependent reactions is jargon for certain photochemical reactions that are involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions, the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI), PSII absorbs a photon to produce a so-called high energy electron which transfers via an electron transport chain to cytochrome b_6f and then to PSI. The then-reduced PSI, absorbs another photon producing a more highly reducing electron, which converts NADP^+ to NADPH.
Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana (singular: granum). Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment. In thylakoid membranes, chlorophyll pigments are found in packets called quantasomes.
Renewable energy sources offer a promising solution for mitigating sustainability and CO2 emissions-related issues due to their vast energy generation capacity. They enable hydrogen production via water electrolysis, as well as carbon capture and utilizati ...
The value of operando and in situ characterization methodologies for understanding electrochemical systems under operation can be inferred from the upsurge of studies that have reported mechanistic insights into electrocatalytic processes based on such mea ...
Washington2023
, , , , ,
At the center of microbial bioelectricity applications lies the critical need to express foreign heme proteins that are capable of redirecting the electron flux of the cell’s metabolism. This study presents bioengineered Synechocystis sp. PCC 6803 cells ca ...