Summary
A ground track or ground trace is the path on the surface of a planet directly below an aircraft's or satellite's trajectory. In the case of satellites, it is also known as a suborbital track or subsatellite track, and is the vertical projection of the satellite's orbit onto the surface of the Earth (or whatever body the satellite is orbiting). A satellite ground track may be thought of as a path along the Earth's surface that traces the movement of an imaginary line between the satellite and the center of the Earth. In other words, the ground track is the set of points at which the satellite will pass directly overhead, or cross the zenith, in the frame of reference of a ground observer. In air navigation, ground tracks typically approximate an arc of a great circle, this being the shortest distance between two points on the Earth's surface. In order to follow a specified ground track, a pilot must adjust their heading in order to compensate for the effect of wind. Aircraft routes are planned to avoid restricted airspace and dangerous areas, and to pass near navigation beacons. The ground track of a satellite can take a number of different forms, depending on the values of the orbital elements, parameters that define the size, shape, and orientation of the satellite's orbit. (This article discusses closed orbits, or orbits with eccentricity less than one, and thus excludes parabolic and hyperbolic trajectories.) Typically, satellites have a roughly sinusoidal ground track. A satellite with an orbital inclination between zero and ninety degrees is said to be in what is called a direct or prograde orbit, meaning that it orbits in the same direction as the planet's rotation. A satellite with an orbital inclination between 90° and 180° (or, equivalently, between 0° and −90°) is said to be in a retrograde orbit. (Direct orbits are by far the most common for artificial satellites, as the initial velocity imparted by the Earth's rotation at launch reduces the delta-v needed to achieve orbit.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.