In mathematics, a sequence (s1, s2, s3, ...) of real numbers is said to be equidistributed, or uniformly distributed, if the proportion of terms falling in a subinterval is proportional to the length of that subinterval. Such sequences are studied in Diophantine approximation theory and have applications to Monte Carlo integration.
A sequence (s1, s2, s3, ...) of real numbers is said to be equidistributed on a non-degenerate interval [a, b] if for every subinterval [c, d ] of [a, b] we have
(Here, the notation |{s1,...,sn} ∩ [c, d ]| denotes the number of elements, out of the first n elements of the sequence, that are between c and d.)
For example, if a sequence is equidistributed in [0, 2], since the interval [0.5, 0.9] occupies 1/5 of the length of the interval [0, 2], as n becomes large, the proportion of the first n members of the sequence which fall between 0.5 and 0.9 must approach 1/5. Loosely speaking, one could say that each member of the sequence is equally likely to fall anywhere in its range. However, this is not to say that (sn) is a sequence of random variables; rather, it is a determinate sequence of real numbers.
We define the discrepancy DN for a sequence (s1, s2, s3, ...) with respect to the interval [a, b] as
A sequence is thus equidistributed if the discrepancy DN tends to zero as N tends to infinity.
Equidistribution is a rather weak criterion to express the fact that a sequence fills the segment leaving no gaps. For example, the drawings of a random variable uniform over a segment will be equidistributed in the segment, but there will be large gaps compared to a sequence which first enumerates multiples of ε in the segment, for some small ε, in an appropriately chosen way, and then continues to do this for smaller and smaller values of ε. For stronger criteria and for constructions of sequences that are more evenly distributed, see low-discrepancy sequence.
Recall that if f is a function having a Riemann integral in the interval [a, b], then its integral is the limit of Riemann sums taken by sampling the function f in a set of points chosen from a fine partition of the interval.