The Würm glaciation or Würm stage (Würm-Kaltzeit or Würm-Glazial, colloquially often also Würmeiszeit or Würmzeit; cf. ice age), usually referred to in the literature as the Würm (often spelled "Wurm"), was the last glacial period in the Alpine region. It is the youngest of the major glaciations of the region that extended beyond the Alps themselves. Like most of the other ice ages of the Pleistocene epoch, it is named after a river, in this case the Würm in Bavaria, a tributary of the Amper.
The Würm ice age can be dated to about 115,000 to 11,700 years ago. Sources differ about the dates, depending on whether the long transition phases between the glacials and interglacials (warmer periods) are allocated to one or other of those periods. The average annual temperatures during the Würm ice age in the Alpine Foreland were below −3 °C (today +7 °C). That has been determined from changes in the vegetation (pollen analysis), as well as differences in the facies.
The corresponding ice age in North and Central Europe is known as the Weichselian glaciation, after the German name for the Vistula river. Despite the global changes in climate that were responsible for the major glaciations cycles, the dating of the Alpine ice sheet advances does not correlate automatically with the farthest extent of the Scandinavian ice sheet. In North America the corresponding "last ice age" is called the Wisconsin glaciation.
In the Gelasian, i.e. at the beginning of the Quaternary period around 2.6 million years ago, an ice age began in the northern hemisphere which continues today. Characteristic of such ice ages is the glaciation of the polar caps. After the Gelasian followed the Early, Middle and Late Pleistocene with a succession of several warm and cold periods. The latter are often called "ice ages" or "glacials", the former term often being confused with the overarching ice age period. The warm periods are called "interglacials".
Glaciers repeatedly advanced from the Alps to the northern molasse foreland and left moraines and meltwater deposits behind that are up to several hundred metres thick.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Weichselian glaciation was the last glacial period and its associated glaciation in northern parts of Europe. In the Alpine region it corresponds to the Würm glaciation. It was characterized by a large ice sheet (the Fenno-Scandian ice sheet) that spread out from the Scandinavian Mountains and extended as far as the east coast of Schleswig-Holstein, northern Poland and Northwest Russia.
There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago. Within ice ages, there exist periods of more severe glacial conditions and more temperate conditions, referred to as glacial periods and interglacial periods, respectively. The Earth is currently in such an interglacial period of the Quaternary glaciation, with the Last Glacial Period of the Quaternary having ended approximately 11,700 years ago.
The Saale glaciation or Saale Glaciation, sometimes referred to as the Saalian glaciation, Saale cold period (Saale-Kaltzeit), Saale complex (Saale-Komplex) or Saale glacial stage (called the Wolstonian Stage in Britain), covers the middle of the three large glaciations in Northern Europe and the northern parts of Eastern Europe, Central Europe and Western Europe by the Scandinavian Inland Ice Sheet. It follows the Holstein interglacial (Hoxnian Stage in Britain) and precedes the Eemian interglacial (Ipswichian in Britain).
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Provides an overview of historical climate change, focusing on methane emissions, equilibrium climate sensitivity, and climate model evolution.
Explores paleoclimate through ice cores, isotopes, and temperature reconstructions, highlighting the influence of Earth's orbit and greenhouse gases on climate patterns.
Covers the MIR spectral domain, femtosecond amplifiers, and nonlinear optics, exploring experimental setups and applications like pump-probe spectroscopy.
Snow significantly impacts the seasonal growth of Arctic sea ice due to its thermally insulating properties. Various measurements and parametrizations of thermal properties exist, but an assessment of the entire seasonal evolution of thermal conductivity a ...
Glacial forelands figure among the most dynamic landscapes on Earth, and their formation is currently accelerating given glacier shrinkage. Draining these forelands are streams hosting unique microbial communities, which have the capacity to impact both th ...
Trajectory inference methods have emerged as a novel class of single-cell bioinformatics tools to study cellular dynamics at unprecedented resolution. Initial development focused on adapting methods based on clustering or graph traversal, but recent advanc ...