Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both man-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras (northern/southern lights). EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.
EMI can be used intentionally for radio jamming, as in electronic warfare.
Since the earliest days of radio communications, the negative effects of interference from both intentional and unintentional transmissions have been felt and the need to manage the radio frequency spectrum became apparent.
In 1933, a meeting of the International Electrotechnical Commission (IEC) in Paris recommended the International Special Committee on Radio Interference (CISPR) be set up to deal with the emerging problem of EMI. CISPR subsequently produced technical publications covering measurement and test techniques and recommended emission and immunity limits. These have evolved over the decades and form the basis of much of the world's EMC regulations today.
In 1979, legal limits were imposed on electromagnetic emissions from all digital equipment by the FCC in the US in response to the increased number of digital systems that were interfering with wired and radio communications. Test methods and limits were based on CISPR publications, although similar limits were already enforced in parts of Europe.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
After a series of common introductory topics covering an introduction to electromagnetic compatibility, modeling techniques and selected chapters from EMC, each student will study a specific topic, wh
Le signal électrique est un vecteur essentiel pour la transmission d'information et d'énergie. En haute fréquence elle se manifeste comme un signal électromagnétique dont l'étude demande le développem
A Faraday cage or Faraday shield is an enclosure used to block electromagnetic fields. A Faraday shield may be formed by a continuous covering of conductive material, or in the case of a Faraday cage, by a mesh of such materials. Faraday cages are named after scientist Michael Faraday, who invented them in 1836. A Faraday cage operates because an external electrical field causes the electric charges within the cage's conducting material to be distributed so that they cancel the field's effect in the cage's interior.
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage to operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.
Explores noise interference sources in electronic systems, covering thermal, magnetic, and electromagnetic fields, ground loops, and common resistance paths.
Explores extrinsic noise sources and artefacts in biomedical instrumentation, along with noise reduction techniques and impedance matching.
Explores the radiation field of an oscillating dipole, interference patterns, and energy redistribution through interference.
This paper focuses on the operational characteristics of a medium voltage resonant DC transformer based on a split capacitor IGCT 3L-NPC leg. The study delves into both the dynamic and static balancing aspects of the 3L-NPC when operating in a two-level, 5 ...
The crowdedness of the RF spectrum constitutes problems in communication, however it also accommodates large amount of useful information. This information can be used to determine existing signals and operating contexts. However, spectrum condition varies ...
EPFL2023
, , ,
The first generation of S-band injectors for free-electron lasers has illustrated high reliability and performance by driving the latest generation of high brightness machines. However, the ultimate electron beam brightness of these devices is limited by t ...