Summary
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking, and satellite communication, among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver accepts radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device. The noun radio is also used to mean a broadcast radio receiver. The existence of radio waves was first proven by German physicist Heinrich Hertz on November 11, 1886. In the mid 1890s, building on techniques physicists were using to study electromagnetic waves, Guglielmo Marconi developed the first apparatus for long-distance radio communication, sending a wireless Morse Code message to a recipient over a kilometer away in 1895, and the first transatlantic signal on December 12, 1901.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (8)
Related concepts (434)
Link budget
A link budget is an accounting of all of the power gains and losses that a communication signal experiences in a telecommunication system; from a transmitter, through a communication medium such as radio waves, cable, waveguide, or optical fiber, to the receiver. It is an equation giving the received power from the transmitter power, after the attenuation of the transmitted signal due to propagation, as well as the antenna gains and feedline and other losses, and amplification of the signal in the receiver or any repeaters it passes through.
QSL card
A QSL card is a written confirmation of either a two-way radiocommunication between two amateur radio or citizens band stations; a one-way reception of a signal from an AM radio, FM radio, television or shortwave broadcasting station; or the reception of a two-way radiocommunication by a third party listener. A typical QSL card is the same size and made from the same material as a typical postcard, and most are sent through the mail as such. QSL card derived its name from the Q code "QSL".
Frequency drift
In electrical engineering, and particularly in telecommunications, frequency drift is an unintended and generally arbitrary offset of an oscillator from its nominal frequency. Causes may include component aging, changes in temperature that alter the piezoelectric effect in a crystal oscillator, or problems with a voltage regulator which controls the bias voltage to the oscillator. Frequency drift is traditionally measured in Hz/s. Frequency stability can be regarded as the absence (or a very low level) of frequency drift.
Show more
Related courses (25)
EE-442: Wireless receivers: algorithms and architectures
The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receive
EE-426: Radio frequency circuits design techniques
RF has changed our daily life in our ever connected wireless world (guess how many radios you have in your smartphone?). The goal of this course is to get familiar with RF design techniques in view of
EE-390(c): Lab in information technologies
Se familiariser avec les aspects pratiques des disciplines de l'orientation «Technologies de l'information»
Show more